Random Sections of Line Bundles Over Real Riemann Surfaces
نویسندگان
چکیده
منابع مشابه
Line Bundles on Super Riemann Surfaces
We give the elements of a theory of line bundles, their classification, and their connec-tions on super Riemann surfaces. There are several salient departures from the classicalcase. For example, the dimension of the Picard group is not constant, and there is nonatural hermitian form on Pic. Furthermore, the bundles with vanishing Chern numberaren’t necessarily flat, nor can every such bundle b...
متن کاملHolomorphic Fiber Bundles over Riemann Surfaces
For the purpose of this paper a fiber bundle F—>X over a Riemann surface X is meant to be a fiber bundle in the sense of N. Steenrod [62] where the base space is X, the fiber a complex space, the structure group G a complex Lie group that acts as a complex transformation group on the fiber, and the transition functions g%j{x) are holomorphic mappings into G. Correspondingly, cross-sections are ...
متن کاملSections of Fiber Bundles over Surfaces
We study the existence problem and the enumeration problem for sections of Serre fibrations over compact orientable surfaces. When the fundamental group of the fiber is finite, a complete solution is given in terms of 2-dimensional cohomology classes associated with certain irreducible representations of this group. The proofs are based on Topological Quantum Field Theory. AMS Subject classific...
متن کاملAdmissible Hermitian Metrics on Families of Line Bundles over Certain Degenerating Riemann Surfaces
We show that a family of line bundles of degree zero over a plumbing family of Riemann surfaces with a separating (resp. non-separating) node p admits a nice (resp. almost nice) family of flat p-singular Hermitian metrics. As a consequence, we give necessary and sufficient conditions for a family of line bundles over such families of Riemann surfaces to admit an (almost) nice family of p-singul...
متن کاملSchottky Uniformization and Vector Bundles over Riemann Surfaces
We study a natural map from representations of a free group of rank g in GL(n,C), to holomorphic vector bundles of degree 0 over a compact Riemann surface X of genus g, associated with a Schottky uniformization of X . Maximally unstable flat bundles are shown to arise in this way. We give a necessary and sufficient condition for this map to be a submersion, when restricted to representations pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2019
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnz051